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Abstract

Programming by Demonstration, or PBD, is an exciting and developing
branch of HCI research. With PBD techniques, end-users can add function.
ality to their environments without programming in the conventional sense.
Virtually all research into PBD, however, presumes that the event history is
a linear sequence of user actions. This paper challenges that notion by intro-
ducing Hierarchical Event Histories, a new approach which represents some
of the end-user's task structure directly in the event history. PBD systems
can then take advantage of this structure to operate more correctly and in
more situations. To assist programmers in generating structured histories,
we also present Hieractors, a new model that provides a simple and clear
syntax for describing arbitrary, high-level application behaviors.
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1 Introduction

In the early days of computers, there was little distinction between the
programmer and the end-user. Programs were designed to solve a particular
task, and to be used exclusively by programmers. Today, this could hardly
be less true. Programs such as word processors, spreadsheets, and databases
are designed to be very general and apply to a large class of problems.
Contemporary end-users, meanwhile, have little or no experience or even
interest in programming.

These two trends have created a problem: generic software packages must
be customized to suit end-users' specific needs, but many end-users have no
means available to them to do such customization. This often results in
end-users performing tedious, repetitive tasks that computers could have
performed for them. For example, consider the simple task of using a word
processor to insert a line number before each line in a large document. We
posed this problem to a small sample of our colleagues, and they all came
to the same conclusion: programming. Some considered Emacs macros, or
Hypertalk scripts, or even Unix scripts. However, not one respondent knew
how to perform this task without programming. In fact, in virtually all word
processors, there is no other alternative. Thus, most end-users would have
no choice but to painstakingly enter all the line numbers manually. Sadly, a
large amount of human-computer interaction is exactly this sort of tedium.

1.1 Programming by Demonstration

These issues prompted research into Programming by Demonstration, or
PBD, an exciting and developing branch of HCI. The basic goal of PBD is
to allow end-users to customize their software by demonstrating the desired
behavior. In the line numbering example, the user might type "1" on line 1.
and "2" on line 2. From this, the PBD system should infer the line number-
ing task, and perhaps automatically complete the task for the user. Indeed.
research systems like Eager [3] can already do this. Other systems have
applied PBD to such domains as widget creation [18], graphical editing [15],
and general-purpose programming [16].

The key advantage of PBD is that it allows end- users to specify programs
in the user interface. They do not have to learn any special syntax or
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programming constructs. In essence, they do not have to program in the
conventional sense, yet they are able to customize their software to suit their
particular needs.

1.2 Challenges to PBD

PBD is a technology of great promise. However, there are numerous prob-
lems yet to be solved before PBD will realize its full potential. These include:

" User Intent
The primary concern of PBD is determining the user's intent in per-
forming some actions. This requires generalizing the user's actions into
a script which runs correctly under different circumstances. For ex-
ample, say we have a word processor which has a Style menu and one
of this menu's choices is Bold. Selecting Bold toggles the boldness of
the selected text. We next demonstrate a script where we only select
Bold from the Style menu. What should happen when we replay the
script? This is unclear. We might have intended to record setting the
text to bold. However, we also might have intended to record toggling
the boldness of the text. Moreover, the difficulty of determining user
intent grows quickly as the complexity of scripts increases.

" Context
PBD systems often require access to the context in which a demon-
stration occurs. For example, if the user's intention was to set the text
to bold, the inferred script should resemble the following:

unless <the-selected-text-is-bold>
selectt "Bold" from the "Style" menu

The unless is necessary to prevent toggling when the selected text
is already bold. To create this script, the PBD system must know
whether the selected text was bold during the demonstration (i.e., it
must have accessed some context of the word processor). This poses
several unsolved problems; specifically, how should the PBD system

- determine the available context from an application?

- access the context?

- reason over the context?
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* Script Matching
Many behaviors are too complex to infer from a single demonstration.
In this case, users must give multiple demonstrations, showing how the
script runs in different situations. Conditionals are the most common
case: as users can demonstrate only one branch at a time, conditionals
require multiple demonstrations. This presents a problem: given two
demonstrations of the same script, the PBD system must match the
scripts, determining which steps are the same and which differ (and,
ultimately, why they differ). Matching can be complicated because
there can be several ways of accomplishing the same task, and users
may be inconsistent across examples. For example, a desktop interface
might support file deletion either by dragging the file icon to the trash
icon, or first selecting the file icon and then selecting Delete from the
File menu. While both methods satisfy the same high-level goal, few
existing PBD systems could match them. This may generate a useless
rule for selecting which method to use, which then may require more
examples than are strictly necessary to learn the behavior.

"* Anticipation Feedback
Script mismatches can be reduced with Anticipation Feedback, as demon-
strated in Eager [3]. With this approach, the PBD system encourages
consistency across examples by providing feedback indicating what
event the PBD system anticipates will next occur. For example, if the
PBD system anticipates that the user will select a certain button, it
may highlight the button in green. The user can then perform the
action, or tell the PBD system to do it. In any case, if selecting the
button is a reasonable alternative, the user is more likely to do so.

Developers wishing to include Anticipation Feedback in their applica-
tions must address the reverse-mapping problem: if the PBD system
records events at a high level (as most do), these high-level events
must be mapped back into widget-level events for anticipation. To
accomplish this, the PBD system must first be aware of the possible
mappings. Second, it must choose one, probably the same one the
user last chose. Indeed, Eager includes special code to do this. The
challenge is to provide this to PBD systems in a general manner.

"* Invocation
In [14], we propose that PBD systems should allow users to not only
demonstrate their programs but to also demonstrate when to invoke
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those programs. Furthermore, there should not be restrictions on the
kinds of events which invoke programs. Most PBD systems support
a small, fixed selection of invoking events, such as clicking on certain
icons or choosing certain menu items. This limits the utility of the
PBD system, however. For example, say that a user wishes to copy all
files to a backup directory before they are deleted. The script which
performs the copying is easy to demonstrate, but most systems could
not invoke the script before each Delete-File event. Thus, expanding
the invocation techniques extends PBD to solve problems it otherwise
could not.

This is by no means an exhaustive list. Other issues include how to represent
the inferred script, allow the user to edit the script, and recover from errors
while running the script. A more complete discussion of these issues is in
[5].

1.3 High-Level Event Histories

A major factor in the quality of a PBD system is the level at which events
are recorded. PBD systems based on device-level events (i.e., mouse and
keyboard events) are very unreliable. For example, if a House-Down event
selected some object, replaying the same event would select the same object
only if the object is uncovered, in the same location, and not selected. In-
deed, the same Mouse-Down event might invoke other, possibly destructive
behavior.

In response to these concerns, various notions of high-level events were
developed. High-level events vary by system, but generally equate to user
actions such as Delete-File, Make-Bold, and Quit-Application. In these
systems, an application processes low-level events in the normal manner
until it determines that a high-level event should be performed. This event
is then passed to the PBD system, where it is recorded, then back to the
application, where it is finally executed. Thus, PBD systems can ignore
device-level events, and reason over high-level event histories. This produces
scripts which are more correct, more efficient, and more understandable.
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2 Hierarchical Event Histories

The same arguments that favor high-level events over device-level events,
however, also favor even higher-level events. Moreover, there is an occasional
need for low-level events, too. For example, consider the user of a word
processor saving the current file under the name "foo". To do this, she first
selects Save from the File menu. This generates a dialog box for specifying
the filename. There is a default value-the current filename-so she enters
control-u to delete the text. She then enters the new name. Finally,
she clicks on the "OK" button. How should the event history depict this
sequence?

One possibility is a single high-level event, namely Save-File("foo").
This has the virtues listed in the previous section on high-level events. Un-
fortunately, it is also limiting. The most compelling argument is based
on correctnes--occasionally, only device-level events accurately portray the
user's intent. Say the user demonstrates making a backup copy by append-
ing ".bak" to the current filename. If the current filename is "foo", the
macro should save the backup as "foo.bak". To demonstrate this, the user
brings up the dialog box from the previous example, but does not delete the
filename. Instead, she appends to it by typing ".bak". Then she clicks on
the "OK" button. How should this sequence appear in the history?

The corresponding high-level event is Save-File ("foo. bak"). Replay-
ing this when the current filename is "bar", however, would produce a file
called "foo.bak", not "bar.bak". An advanced PBD system might fix this
with context and inferencing, generalizing the event to:

Save-File (append *current-filename* ".bak")
However, the PBD system might require vast time and space resources to
make this inference. Even worse, it might fail to infer this at all. Notice,
however, that the net effect of the device-level events is equivalent to the
generalized Save-File event. Thus, if device-level events are in the event
history, they can be replayed directly, and no inferencing is necessary!

Including low-level events in the history has additional benefits for PBD
and other areas as well. In the file-saving example, events such as Open-Dialog,
Set-String, and Close-Dialog can be applied to:

. Invocation: A third-party vendor might provide a macro-based help
facility for the word processor. This might include a window with
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some text on how to specify the filename when saving a file. The help
facility would include a macro which displays this window upon the
Open-Dialog event, and another macro which hides the window upon
the Close-Dialog event. Similarly, another vendor might supply an
automatic spell-checker which is invoked by the Set -String event.

"* Undo: Suppose the user errantly typed control-u and deleted the
current filename. In most systems, she must then retype the entire
filename or abort the save operation. Including low-level events in the
event stream, however, allows her to Undo the errant Key-Press.

" Anticipation feedback: Say that the PBD system correctly antic-
ipates that the user will next issue a Save-File event. How should
this be conveyed to the user? This is the reverse-mapping problem
mentioned above. If the widget-level events are in the event history,
the PBD system can iteratively anticipate those.

Thus, many different levels of events should be included in the history.
However, it is semantically incorrect to include multiple event levels in a
linear event stream. That is, the history cannot be flat, as in Figure 1. If

U• -et.Ueu-.Itmu ' Pile')
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Key.us(-.")
Ke"MP604b11)K•y-Pfu-so)

Key.pV..se(W
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Figure 1: A flat history comprised of multiple levels of events.

this sequence were played back, the device-level events would generate extra
instances of each high-level event. This would result in three Close-Dialog
events, for example. Thus, if multiple event levels are in the event stream.
the event stream itself cannot be linear-it must reflect the actual hierarchy
of events. In this example, it must be structured as in Figure 2.
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Figure 2: The same history as in Figure 1, but here we show the hierarchical
structure.

This argument is the basis for Hierar'chical Event Histories. We propose
that applications should be structured so that they generate histories such
as the one above. This will allow PBD systems, Undo facilities, and other
history mechanisms to operate more correctly and in more situations.

3 The Hieractors Model

For hierarchical event histories to be feasible, there must be a simple way
for application designers to generate them in the first place. We attacked
this problem in three ways. First, we hoped to infer the structure based on
the read-write patterns of the event handlers. This approach is ideal from
the programmer's perspective, since it would work with unmodified code.
Unfortunately, while we could infer the partial sequential order of events
over time, read-write patterns alone do not provide enough information to
completely determine the hierarchical structure.

We then tried the opposite approach, requiring the programmer to ex-
plicitly construct the hierarchy. To that end, we provided functions such as
Creat~e-Event;, Add-Child, and Set-Parent. This approach worked fine for
simple cases, but did not scale well. As we attacked harder problems, we
had to repeatedly add new history-manipulation functions. These became
so unwieldy that it was impractical to continue in this direction.

From these efforts we concluded that:

* programmers should be responsible for generating the event hierarchy;
and

* there should be some architectural support to simplify this process.
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We satisfied these criteria by developing Hieractors, a new model for ex-
pressing high-level behaviors. Hieractors (from Hierarchical Interactors) are
inspired by the Interactors model [19]. Interactors are effective in describing
widget-level interface behaviors. Hieractors generalize this model to provide
a simple and clear syntax for describing arbitrary, high-level application
behaviors.

The basic idea behind hieractors is that most application behaviors
are naturally defined in terms of the events which start, run, stop, and
abort them. For example, consider the behavior of selecting a button in a
graphical interface. The hieractor providing this behavior would start on a
Mouse-Down in the button, run on Mouse-Moves, and stop on a Mouse-Up
in the button (aborting on other Mouse-Ups). This behavior is supplied by
the following code fragment:

(create-instance 'Button-Behavior *hieractor*
(:result-type 'Select-Button)
(:start-when 'Mouse-Down)
(:running-when 'Mouse-Move)
(:stop-vhen '(Mouse-Up :where in-original-button?))
(:abort-vhen '(Mouse-Up :where outside-original-button?))

When a hieractor completes, it issues a higher-level event (in this example,
a Select-Button event). The children of this event are precisely the events
which triggered the start, running, and stop actions. This leads to the
simple, but hierarchical, history seen in Figure 3.

Nouue.Ove

Figure 3: A simple hierarchical history for selecting a button.

High-level events can also start, run, stop, or abort even higher-level be-
haviors. This leads to more complex hierarchical histories, such as the his-
tory depicted in the file saving example above. To illustrate, the Save-File
event from that example could have been generated by the following:
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(create-instance 'File-Savor *hieractor*
(:result-type 'Save-File)
(:start-vhen '(Open-Dialog :where save-file-dialog?))
(:running-when 'Set-String)
(:stop-when '(Close-Dialog :where save-file-dialog?))
(:abort-when '(Abort-Dialog :where save-file-dialog?))

Expressing the common high-level application behaviors required some
extensions to this model, the most important being:

"" Event Combinations
Some behaviors make a transition (i.e., start, run, stop, or abort) after
a sequence of events. For example, in a calculator, the Add-Numbers
behavior starts on an Enter-Number followed by a Select-Button
where the selected button's label is "+". Similarly, transitions can

occur after either of two (or more) events.

"* Scoping
When a hieractor, such as the "file-saver" above, is defined, it is at-
tached to an object called its scope. The hieractor can only observe
events which pass through this scope. For widgets, the scope usually
corresponds to the graphical objects making up the widget. Thus,
mouse clicks over a scrollbar are not needlessly processed by, say, the
menubar in the same window. Sometimes behaviors must observe
events from multiple widgets, or events that are not even associated
with widgets. These behaviors can have a scope of any window, any
application, or the entire system (where they observe every event).

Behaviors sometimes start in one scope, but run in another. For ex-
ample, consider moving an object in a graphical editor. When idle.
this behavior should wait for a Mouse-Down event inside an object.
Once running, however, it must observe Mouse-Move events anywhere
in the window. For this reason, behaviors can specify a separate run-
ning scope. For convenience, this can be specified relative to the initial
scope. In the example, the running scope is :window, meaning what-
ever window the object is in.

e Priorities
It is possible (and common) for two hieractors to claim the same event.
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In fact, the same hieractor can make multiple claims on a single event.
For example, consider editing a one-line text field. This starts on any
Key-Press event, but it also runs over other Key-Press events, and
stops when the user hits Return. This is specified as:

(create-instance 'Simple-Text-Editor *hieractor*
(:start-when 'Key-Press)
(:running-when 'Key-Press)
(:stop-when '(Key-Press :where return-key?))

Say the user types "H", then "i", then Return. The "H" unambigu-
ously starts the hieractor. The "i", however, can either be a running
event or another start event. Which transition should be favored by the
event dispatcher? One solution is to disallow hieractors from starting
while running. This is unnecessary and restrictive, however. Instead,
transitions have integer priorities, where the larger priority is favored
(and ties are decided randomly). Also, priorities can be absolute, or
relative to the start priority. By default, abort events have the high-
est priority, followed by stop events, running events, and finally start
events. Thus, for example, the text editor would process the "i" as a
running event.

A more complete discussion of Hieractors is given in (131. Note, however,
that we have satisfied the design critera for Hieractors. First, the program-
mer, not the PBD system, defines the structure of the application. Second,
Hieractors provide significant architectural support to assist in this task.
Our experiences indicate that programming with Hieractors requires about
the same effort as conventional programming. However, Hieractors provide
hierarchical event histories, with all their advantages.

4 Advantages of Hierarchical Event Histories

The key advantage to our model is that it represents some of the end-user's
task structure directly in the event history. PBD systems can then take
advantage of this structure to operate more correctly and in more situations.
Referring back to the vario-s challenges facing PBD systems, hierarchical
event histories address many of these issues:
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User Intent
Hierarchical event histories can aid in determining user intent because
they expose more levels of user actions to the PBD system. Each level
of the event hierarchy is typically a specialization of the level below it,
corresponding to the effect the lower level events have in the current
context. For example, consider when the user selects Bold from the
Style menu. This would produce a Toggle-Bold event, which then
produces a Set-Bold event in some contexts and a Clear-Bold event
in others. Thus, the history contains both the toggle and setting (or
clearing) behaviors, enabling the PBD system to offer both options to
the end-user without making any inferences!

* Context
While our approach does not address the context problem directly,
it does reduce the situations in which context is even necessary. Or,
to rephrase this, hierarchical event histories extend the coverage of
PBD systems which do not have access to application context. This
is because high-level events implicitly include some context, as just
described. Note that this is only a partial solution, however, as the
user's intent may depend on context that is not implicit in the hier-
archy. Even in these cases, however, the PBD system can select from
the various levels to choose which should be generalized.

a Script Matching
One cause of mismatched events in multiple scripts is when there are
multiple ways to perform some action, as in the file deletion example
from above. Hierarchical event histories can reduce script mismatches
in many of these cases, as the mismatched low-level events may be
children of easily matchable high-level events. For example, say the
user first demonstrates deleting a file by dragging it to the trash. and
later demonstrates the same step by selecting the file and selecting
Delete from the File menu. While the low-level events are completely
different, both actions will produce the same high-level event, namely
Delete-File, thus making the matching a trivial task. While this
does not solve the generalization problem (i.e., what the arguments to
the Delete-File should be), at least it advances the PBD system to
that step.

* Anticipation Feedback
Hierarchical event histories provide exactly the low-level support needed
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to solve the reverse-mapping problem for Anticipation Feedback. This
is because the recorded script contains the widget-level events. This
enables the PBD system to anticipate an event above the widget level
by iteratively anticipating the low-level events it comprises.

* Invocation
PBD systems that allow arbitrary events to invoke user-defined pro-
grams can further benefit from hierarchical event histories. Including
high-level events such as Delete-File in the event history allows pro-
grams to be invoked when these events occur. Moreover, including
low-level events such as Key-Preus and Select-Button in the event
history supports the invocation techniques currently available to users.
By exposing more levels of a user's task structure, our approach gives
users more control over how and when their programs are invoked.

There are additional benefits to hierarchical event histories. For exam-
ple, by allowing recorded scripts to be replayed at the highest semantically
correct level, they can be more efficient than linear events. Also, while out-
side the scope of this paper, hierarchical event histories benefit other parts
of HCI, such as Undo, Help, and Task Analysis.

5 Related Work

For people interested in learning more about Programming by Demonstra-
tion, [4] presents a thorough overview and history of the field and describes
the current state-of-the-art. The crucial problem of determining user intent
was first described in (9]. While many systems have made inroads on this
problem, perhaps the most promising is Cima [17], a learning architecture
being developed specifically for PBD systems. We are currently pursuing
ways to integrate our work with the Cima environment.

While there are many user interface specification techniques (such as [10,
12, 8]), these do not address the nature of the event history. Approaches
such as TAG [21] and GOMS [2] do consider the hierarchical task structure,
but not how to generate such a history (i.e., they are analytical, not con-
structive). A more hybrid approach is taken in Task-Oriented Parsing [11],
which is somewhat constructive and hierarchical. It is based on context-free
grammars, however, which are less powerful than event-based models, and
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cannot describe some important user interface behaviors [8]. Moreover, their
approach is not truly constructive because they provide "normal feedback"
only for "meaningful tasks", and not "all [user] input actions."

The simpler high-level event model is supported by numerous ... tems.
In particular, most model-based UIMS's, including MIKE [6], [71,
Humanoid [221, and others. We extended Garnet [20] because of c per-
tise with that model, and because the resulting Hieractors model ui clear,
concise, and efficient. It seems reasonable that other model-based UIMS's
could be adapted to generate hierarchical event histories as well. Also, Ap-
ple Events [1] are a high-level event paradigm now employed by a large and
growing vendor population. Because of this, we are considering converting
Hieractors to operate over Apple Events.

6 Status and Future Work

The ideas presented here serve as the basis for Katie [13], an application
environment which includes a Hieractors interpreter for the basic model
with the extensions listed in this paper. Katie also includes two widget
sets (a basic set and a more complicated Motif look-and-feel set), several
small applications, and a larger database-type application. At this point,
we have proven the viability of the Hieractors model for generating hier-
archical event histories. The next phase of this research will focus on the
graphical presentation and manipulation of the structured history, and the
many applications of hierarchical event histories.
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